
The Murano Plugin for Fuel
Documentation

Release 1.2.0

Mirantis Inc.

December 19, 2016

CONTENTS

1 Overview 1
1.1 Software prerequisites . 1
1.2 Limitations . 1
1.3 Licenses . 1
1.4 References . 1

2 Installing the Murano plugin 2

3 Configuring the Murano plugin 3

4 Updating the Murano plugin 6

5 Release notes 7
5.1 1.2.0 . 7
5.2 1.1.0 . 8
5.3 1.0.0 . 9

i

CHAPTER

ONE

OVERVIEW

Murano plugin for Fuel is a plugin to install the Application Catalog Service for OpenStack. Murano plugin provides
flexibility for the OpenStack Application Catalog service by supporting multiple releases and versions (for some Fuel
version). Also, the plugin provides the capability to detach Murano from the controller node as a separate node.

Software prerequisites

To use Murano plugin, verify that your environment meets the following prerequisites:

Prerequisites Version/Comment
Fuel 9.0

Limitations

• Murano plugin is known to conflict with Contrail plugin. The reason is that both murano-api and
contrail-api services use 8082 as their default port. To resolve this, please specify a custom port for
contrail-api in Contrail plugin.

See also release-notes for any release-specific known issues.

Licenses

Component License
Murano plugin Apache 2.0

References

For more information about Murano plugin for Fuel described in this document, see:

• Specification

• Launchpad project

• GitHub project

1

https://specs.openstack.org/openstack/fuel-specs/specs/9.0/murano-fuel-plugin.html
https://launchpad.net/fuel-plugin-murano
http://git.openstack.org/cgit/openstack/fuel-plugin-murano

CHAPTER

TWO

INSTALLING THE MURANO PLUGIN

Before you install the Murano plugin, verify that your environment meets the requirements described in Software
prerequisites. You must have the Fuel Master node installed and configured before you can install the plugin. Typically,
you install a Fuel plugin before you deploy an OpenStack environment.

To install the Murano plugin:

1. Download the Murano plugin from the Fuel Plugins Catalog.

2. Copy the plugin .rpm package to the Fuel Master node:

Example:

scp detach-murano-<plugin_version> root@fuel-master:/tmp

3. Log in to the Fuel Master node CLI as root.

4. Install the plugin by typing:

fuel plugins --install detach-murano-<plugin_version>

5. Verify that the plugin is installed correctly:

fuel plugins
id	name	version	package_version
1 | detach-murano | 1.2.0 | 4.0.0

6. Proceed to Configuring the Murano plugin.

2

https://www.mirantis.com/products/openstack-drivers-and-plugins/fuel-plugins/

CHAPTER

THREE

CONFIGURING THE MURANO PLUGIN

Once the Murano plugin is installed, follow the instruction below to create an OpenStack environment with Murano
services.

To configure the plugin:

1. Create an OpenStack environment as described in the Fuel User Guide or use an existing one.

2. To enable the Murano plugin, navigate to the Environments tab and select the Murano plugin checkbox:

3. Configure the Murano plugin as required selecting the following available settings.

Murano Repository URL specifies the Murano applications repository to import a package.

Install Murano service broker for Cloud Foundry enables Cloud Foundry Service Broker API. Cloud Foundry
is PaaS which supports full lifecycle from initial development through all testing stages to deployment. Most
well-known Cloud Foundry flavors are Cloud Foundry OSS, Pivotal Cloud Foundry, and Pivotal Web Services.
If Cloud Foundry Service Broker API is enabled, Murano apps are available at Cloud Foundry as services.

Enable glance artifact repository enables usage of new Glance API, which stores not only the VM images but
also data assets and their metadata for other OpenStack projects. This specification defines the usage of this
feature in Murano. Therefore, Murano may store its packages in Glance and benefit from all its features.

3

http://docs.openstack.org/developer/fuel-docs/userdocs/fuel-user-guide/create-environment.html

The Murano Plugin for Fuel Documentation, Release 1.2.0

Install Application Catalog UI enables the OpenStack Community App Catalog, which will help make applica-
tions available on OpenStack cloud by providing a community-driven catalog containing Glance images, Heat
templates, and Murano applications.

Additional config allows specifying Murano end-user credentials, such as names of Murano users (db, keystone,
rabbit), passwords, and others.

4. To deploy Murano services on a particular OpenStack node, assign the Murano node role to this node in the
Nodes tab. There are no restrictions to combining the Murano role with other node roles. Otherwise, Murano
services will be deployed on controller nodes.

4

The Murano Plugin for Fuel Documentation, Release 1.2.0

5. Configure your environment as described in the Fuel User Guide.

Now, you can deploy your OpenStack environment with Murano as described in the Fuel user Guide.

5

http://docs.openstack.org/developer/fuel-docs/userdocs/fuel-user-guide/configure-environment.html
http://docs.openstack.org/developer/fuel-docs/userdocs/fuel-user-guide/deploy-environment.html

CHAPTER

FOUR

UPDATING THE MURANO PLUGIN

To update the plugin, follow the steps described in the Fuel Plugins Guide.

6

https://wiki.openstack.org/wiki/Fuel/Plugins#Plugin_versioning_system

CHAPTER

FIVE

RELEASE NOTES

1.2.0

Murano Dashboard has been renamed to App Catalog and now allows seamless integration and single panel structure
with App Catalog UI dashboard.

New Features

• CLI command :command:env-templat-create-env now supports --region flag

• Murano dashboard has been renamed to App Catalog, monolithic config file has been split into multiple small
files. Every such file defines either a panel group or adds general murano-related settings to horizon.

• /environments/ENV_ID/model/PATH endpoint added. GET request responds with the subsection of ENV_ID’s
object model located in its PATH. PATCH request applies json-patch from request body to ENV_ID’s model. It
does not contain PATH in the URL.

• Support for environment model edit API was added

• New Murano CLI command murano environment-model-show <ID> [--path <PATH>]
[--session-id <SESSION_ID>]

• New Murano CLI command murano environment-model-edit <ID> <FILE> --session-id
<SESSION_ID>

• New OSC command openstack environment model show <ID> [--path <PATH>]
[--session-id <SESSION_ID>]

• New OSC command openstack environment model edit <ID> <FILE> --session-id
<SESSION_ID>

• io.murano.system.HeatStack.push can be called with async => true flag for asynchronous push

• Added a MetadataAware mixin class capable to retrieve the metadata attributes from the implementing objects
and all its parents.

• Added a metadata() yaql function to retrieve the meta information about the object, stored in the ”?/meta-
data” section of object model.

• New OSC command package list.

Known Issues

• Deploying Cloud Foundry integration service with this release of fuel-plugin-murano does not work
correctly.

7

The Murano Plugin for Fuel Documentation, Release 1.2.0

• Community App Catalog UI panels, delivered as part of fuel-plugin-murano do not work correctly with
this release.

Upgrade Notes

• To upgrade to Newton version of app catalog you need to remove old _50_murano.py config
file, that defined in murano dashboard. Be sure to also remove any .pyc and .po files. After
that you need to copy all new config files from muranodashboard/local/enabled/*.py to
openstack_dashboard/local/enabled/ and restart horizon

Bug Fixes

• added default rules to NeutronSecurityGroupManager to avoid error if createDefaultInstanceSecurity-
GroupRules() method isn’t extended in inheritor and SecurityGroups isn’t created in application with call of
addGroupIngress() method.

• The issue with adding already deployed components to environment via dropdown is fixed with applying
changes for the new type format.

• It is now possible to make a PUT request with body equal to ‘[]’ to ‘/environments/<env_id>/services’ end-
point. This will result in removing all apps from current session. This allows deleting the last application from
environment from CLI.

• Previously Cinder Volumes created in MuranoPL were not released correctly on object destruction. The issue is
now fixed.

Other Notes

• Bumped the RUNTIME_VERSION attribute to 1.5

1.1.0

New Features

• New on-request garbage collector for MuranoPL objects were implemented. Garbage collection is triggered
by io.murano.system.GC.collect() static method. Garbage collector destroys all object that are not reachable
anymore. GC can handle objects with cross-references and isolated object graphs. When portion of object
model becomes not reachable it destroyed in predictable order such that child objects get destroyed before their
parents and, when possible, before objects that are subscribed to their destruction notifications.

• Internally, both pre-deployment garbage collection (that was done by comparision of Objects and
ObjectsCopy) and post-deployment orphan object collection are now done through the new GC.

• io.murano.system.GC.isDoomed() static method was added. It can be used within the .destroy method to
test if other object is also going to be destroyed.

• io.murano.system.GC.isDestroyed() static method was added. It checks if the object is destroyed and thus no
methods can be invoked on it.

• Ability to load package from directory was added. If specified directory contains all the needed files then
package will be imported as usual.

5.2. 1.1.0 8

The Murano Plugin for Fuel Documentation, Release 1.2.0

Known Issues

• Deploying Cloud Foundry integration service with this release of fuel-plugin-murano does not work
correctly.

• If you update from murano plugin version 1.0.0 with Murano deployed on controller to 1.1.0 and add deploy
murano on a separate node Murano will not work correctly.

• Community App Catalog UI panels, delivered as part of fuel-plugin-murano do not work correctly with
this release.

Bug Fixes

• It was impossible to use –owned flag when Glare was used to filter packages. This issue is fixed now.

• CLI flag --is-public had no effect when importing a package with ‘glare’ package service. This flag now
correctly marks the package public on upload.

• It was possible to import the same murano package from the CLI into the same project multiple times if glare
was used and the package was imported as a private one. The issue is now fixed.

• Murano engine no longer logs methods string(), json(), and yaml() of the
‘io.murano.system.Resources’ class. This is done to prevent UnicodeDecodeError’s when transferring
binary files to murano agent.

Other Notes

• Murano Dashboard relies on Glance v1 API for image uploads. In case it is not available an error will be shown
and all the image-related functionality will be unavailable.

1.0.0

New Features

• Added a new manifest format 1.4.0. Introduced the Scope keyword for class methods to declare a method’s
accessibility from outside through the API call.

• New OSC command environment list [–all-tenants]

• New OSC command environment show <ID or NAME> [–session-id <SESSION_ID>] [–only-apps]

• New OSC command environment rename <ID> <NAME>

• New OSC command environment session create <ID>

• Implemented the capability for API endpoint /catalog/packages to filter ‘id’, ‘category’, ‘tag’ properties
using the ‘in’ operator. An example of using the ‘in’ operator for ‘id’ is ‘id=in:id1,id2,id3’. Added this filter
using the syntax that conforms to the latest guidelines from the OpenStack API-WG.

• Added the timeout parameter to runCommand and putFile methods of the
io.murano.configuration.Linux class.

• New OSC command category list

• New OSC command category show <ID>

• New OSC command category create <NAME>

5.3. 1.0.0 9

The Murano Plugin for Fuel Documentation, Release 1.2.0

• New OSC command category delete <ID> [<ID> ...]

• New OSC command environment create [–join-net-id <NET_ID>] [–join-subnet-id <SUBNET_ID>] [–
region <REGION_NAME>] <ENVIRONMENT_NAME>

• New OSC command environment delete [–abandon] <NAME_or_ID> [<NAME_or_ID> ...]

• Added support for class/method JSON-schema API.

• New murano CLI command murano class-schema [–package-name PACKAGE_NAME] [–class-version
PACKAGE_VERSION] <CLASS> [<METHOD> [<METHOD> ...]]

• New OSC command openstack class-schema [–package-name PACKAGE_NAME] [–class-version PACK-
AGE_VERSION] <CLASS> [<METHOD> [<METHOD> ...]]

• Added support for static actions API.

• New Murano CLI command murano static-action-call [–arguments [<KEY=VALUE> [<KEY=VALUE>
...]]] [–package-name <PACKAGE>] [–class-version CLASS_VERSION] <CLASS> <METHOD>

• New OSC command openstack static-action call [–arguments [<KEY=VALUE> [<KEY=VALUE> ...]]]
[–package-name <PACKAGE>] [–class-version CLASS_VERSION] <CLASS> <METHOD>

• Added Cinder volume classes to the core library. Now, it s possible to create a new volume from various sources
or use an existing volume. Also, it is possible to attach volumes to instances and boot instances from volumes.

• Added the driver configuration option to the networking group. It allows to explicitly select the network-
ing driver. It supports ‘neutron’ and ‘nova’ options. If set to None (default), Murano attempts to use ‘neutron’
if available, ‘nova’ otherwise. The change is backward compatible.

• Added the --dep-exists-action option to murano package-import and bundle-import commands. It
allows specifying a different default action for an existing main package and existing dependencies. In case of
specifying only --exists-action, the action also applies to dependencies.

• Added the DISPLAY_MURANO_REPO_URL setting that is used as a user-visible link to
apps.openstack.org or any other murano applications repository.

• Added the description_text field to environment and environment templates database tables and respec-
tive API objects.

• Introduced a new MuranoPL io.murano.system.GC class. Now, MuranoPL garbage collector can be
used to set up destruction dependencies between murano objects. If object Foo is subscribed to object Bar’s
destruction, it will be notified through a specific handler. If both Foo and Bar are going to be destroyed during
one execution session, Foo will be destroyed after Bar. You can omit the handler, in this case destruction order
will also be preserved. Handler can be a static or a usual function.

• Implemented the capability for the helper methods of Linux class to run concurrently if executed for different
VM agents.

• Added the capability to execute actions (delete, abandon or deploy) on multiple selected environments.

• Added the following meta-classes to the core library - Title Description HelpText Hidden Section
Position ModelBuilder. These classes will later be used to implement dynamic object model generation.

• Added an overload of the new function - new($model, $owner). It loads a complete object graph in a
single call. Objects in the model can have cross references. In that case, this is the only way to instantiate the
graph. Objects may be specified either in object model format (with ‘?’ attribute or in MuranoPL format (used
for Meta definitions).

• The contract class() now uses the same approach to load classes from dictionaries. Thus the same two
syntaxes apply there as well.

• Added support for application deployment across OpenStack regions. Now, all OpenStack re-
source classes inherit from io.murano.CloudResource that provides .getRegion() method and

5.3. 1.0.0 10

The Murano Plugin for Fuel Documentation, Release 1.2.0

regionName property. This allows assigning resources to different regions. .getRegion() returns
io.murano.CloudRegion instance that resource or its parent belongs to. The interface of CloudRegion
is similar to the Environment class and should be used to get HeatStack instance associated with the re-
gion, default network configuration, security group manager, and agent listener instances. Environment now
acts as a default region so backward compatibility is not broken. However, new applications should not use the
Environment to set security group rules but rather a region(s) of their instance(s) in order to work correctly
when their instances were configured to use region other than the default.

• Added the api_workers option to the murano configuration group. It controls the number of API workers
launched by murano-api. If not set, it defaults to the number of CPUs available.

• Added a new engine RPC call to generate json-schema from MuranoPL class. The schema may be generated
either from the entire class or for specific model builders - static actions that can be used to generate object
model from their input. Class schema is built by inspecting class properties and method schema using the same
algorithm but applied to its arguments.

• Implemented a new framework for MuranoPL contracts. Now, instead of several independent implementations
of the same YAQL methods (string(), class() and others) all implementations of the same method are
combined into a single class. Therefore, we now have a class per contract method. This also simplifies the
development of new contracts. Each such class can provide methods for data transformation (default contract
usage), validation that is used to decide if the method can be considered an extension method for the value, and
JSON schema generation method that was moved from the schema generator script.

• Previously, when a class overrode a property from its parent class the value was stored separately for both of
them, transformed by each of the contracts. Thus each class accessed the value of its contract. In absolute
majority of the cases, the observed value was the same. However, if the contracts were compatible on the
provided value (say int() and string() contracts on the value “123”), they were different. This is considered to
be a bad pattern. Now, the value is stored only once per object and transformed by the contract defined in the
actual object, type. All base contracts are used to validate the transformed object thus this pattern will not work
anymore.

• The value that is stored in the object’s properties is obtained by executing a special finalize contract imple-
mentation that, by default returns the input value unmodified. Because validation happens on the transformed
value before it gets finalized, the transformation can return a value that will pass the validation, though the
final value will not. This is used to relax the template() contract limitation that prevented child class from
excluding additional properties from the template.

• The string() contract no longer converts everything to string values. Now, it only converts scalar values
to strings. Previous behavior allowed the string() property to accept lists and convert them to their Python
string representation, which is clearly not what developers expected.

• Due to refactoring, contracts work a little bit faster because there is no more need to generate YAQL function
definition for each contract method on each call.

• Changed the type representation in the object model. Previously, there were three attributes in the ”?” section
of the object - type, classVersion, and package, where only the type was mandatory. Now, these
attributes are merged into single attribute type that has the typeName/version@package format. The
version and package parts are still optional.

• Previously, when pre-deployment garbage collection occurred it executed .destroy method for objects that
were present in the ObjectsCopy section of the object model (which is the snapshot of the model after last
deployment) and not present in the current model anymore (because they were deleted through the API between
deployments). If the destroyed objects were to access another object that was not deleted it was accessing its
copy from the ObjectsCopy. Thus any changes to the internal state made by that object were lost after the
garbage collection finished (that is, before the .deploy method call) and could not affect the deployment.
Now, if the object is present in both Objects and ObjectsCopy, a single instance (the one from Objects)
is used for both garbage collection and deployment. As a consequence, instances (in their .destroy method)
now may observe changes made to other objects they refer if they were not deleted, but modified through the

5.3. 1.0.0 11

The Murano Plugin for Fuel Documentation, Release 1.2.0

API. In some rare cases, it may break existing applications.

• OSC plugin now accepts --murano-url and MURANO_URL to allow using a custom murano-api endpoint

• Murano dashboard now comes with the muranodashboard/local/local_settings.d/_50_murano.py
file that contains murano-specific settings for horizon (for example, MURANO_API_URL).

• Separated murano service broker from murano-api into a murano-cfapi service. Created a separate database and
paste.ini for service broker.

• Added a new API endpoint v1/actions to call static public methods. It accepts class name, method name,
method arguments, and optionally package name and class version in the request body. This call does not create
an environment, object instances or database records.

• Implemented a new contract function template(). template() works similar to the class() in regards
to the data validation but does not instantiate objects. Instead, the data is left in the object model in dictionary
format so that it could be instantiated later with the new() function. Additionally, the function allows excluding
specified properties from validation and from the resulting template so that they could be provided later. Objects
that are assigned to the property or argument with template() contract will be automatically converted to
their object model representation.

• Split Instance‘s .deploy() method into two phases - beginDeploy() and endDeploy(). This
allows the application developer to provision multiple instances at once without the need to push the stack for
each instance.

• Added /templates/{env_template_id}/services/{path:.*?} API endpoint for environment
template application update operation.

• Added the capability to declare MuranoPL YAML methods with variable length, positional, and keyword argu-
ments. This is done using argument Usage attribute. Regular arguments have Standard usage which is the
default. Variable length args (args in Python) should have Usage: VarArgs and keyword args (kwargs) are
declared with Usage: KwArgs. Inside the method they are seen as a list and a dictionary correspondingly.
For such arguments contracts are written for individual argument values, thus no need to write them as lists or
dicts.

Known Issues

• Murano services will not operate correctly when installed on a separate detached node, if you’re installing
fuel-plugin-murano in an environment that contains Murano, bundled with Fuel 9.0. This happens be-
cause murano-engine service on controller nodes is still active. As a workaround, you need to disable
murano-engine service on controller nodes manually after installing fuel-plugin-murano.

• Deploying Cloud Foundry integration service with this release of fuel-plugin-murano does not work
correctly.

Upgrade Notes

• New database migration 015 has to be applied.

• Previously, all murano-specific horizon settings had to be kept in local_settings.py
file of Horizon. You need to remove those settings from local_settings.py
and copy muranodashboard/local/local_settings.d/_50_murano.py to
openstack_dashboard/local/local_settings.d/ directory in horizon, and keep all murano-
related changes there.

5.3. 1.0.0 12

The Murano Plugin for Fuel Documentation, Release 1.2.0

Deprecation Notes

• Deprecated the Usage Action keyword. For format versions 1.4.0 and newer, use Scope Public instead.

• Renamed the workers option from the engine group to engine_workers to reduce ambiguity with the
api_workers option.

Security Issues

• Addressed cve-2016-4972. In several places Murano used loaders inherited directly from yaml.Loaderwhen
parsing MuranoPL and UI files from packages. This is unsafe, because this loader is capable of creating custom
python objects from specifically constructed yaml files. With this change all yaml loading operations are done
using safe loaders instead.

Bug Fixes

• When glare is used, specifying a base class in the UI definition now also fetches all the packages with classes
that inherit from that class. For example, if you specify the ‘io.example.Parent’ class, the dashboard fetches
‘io.example.Child1’ and ‘io.example.Child2’, and any other descendants of ‘io.example.Parent’ that are present.

• Fixed the issue with sequential download of packages. Dashboard is now using ‘tables.LinkAction’ instead of
‘tables.Action’ for DownloadPackage table action.

• The API call for deleting a service from environment template did not return the result of its operation. The
issue was fixed.

• Fixed the issue with the UI dialog that did not display in Murano Dashboard for applications without UI def-
initions bundled in the package. This usually affected HOT-based packages and other non-muranopl-based
applications.

• Importing a package into glare now fills the ‘inherited’ field with full inheritance info. Previously, it only
contained immediate parent classes.

• Fixed the issue that prevented the Murano Dashboard from finding certain horizon filters, such as
‘parse_isotime’, ‘timesince_or_never’, and others.

• Removed the need for Keystone v2 options (admin_user, admin_password, admin_tenant_name)
when Keystone v3 is in use.

• Previously, Murano assumed that the service user and service project are in the ‘Default’ domain. These values
can now be set in the keystone_authtoken configuration group.

• The equality check (assertEqual) in the test-runner can now properly compare two MuranoPl objects.

• Prevented the resource leak for objects created during deployment with new() function call.

• Murano is now able to deploy applications in the environments with disabled Neutron Security Groups. Detec-
tion is based on the presence of the security-group Neutron extension.

• Fixed the password check in dynamic UI forms. Previously, the dashboard did not validate the password fields
with IDs not ending with ‘password’. Now, to determine whether to add default password validators to the field
or not, the dashbord only checks the field type itself, instead of both field type and ending of the field ID.

• The Environment components page now reloads after an empty environment deployment. This allows adding
new components to the empty environment without having to reload the page manually.

• Fixed the order of packages import. The main package is now imported before all its dependencies. Cyclic
dependencies are imported in a random order.

5.3. 1.0.0 13

The Murano Plugin for Fuel Documentation, Release 1.2.0

• Added the capability to simultaneously use the --resources-dir and --template arguments for the
package-create command. This allows creating HOT-packages with the Resources folder.

• Whenever murano-engine accesses script files, text script files are opened in ‘rU’ mode that recognizes all types
of newlines and binary files are opened in ‘rb’ mode to prevent their corruption.

• Improved the performance of the Recent Activity panel on the Browse Catalog page.

• Fixed the issue that reset all environment changes from the previous session (adding or removing components
without deployment) after consequent login. Also, the Ready to deploy status now only displays if there are
changes pending in the current session.

• The test-runner now outputs the tests it runs and their results to stdout directly, instead of the logging system.

• The test-runner now does not output logs to stderr by default unless a ‘use_stderr’ parameter is specified in the
configuration file.

• Fixed the issue that prevented the test-runner from properly invoking setUp and tearDown methods of fix-
tures in some cases.

5.3. 1.0.0 14

	Overview
	Software prerequisites
	Limitations
	Licenses
	References

	Installing the Murano plugin
	Configuring the Murano plugin
	Updating the Murano plugin
	Release notes
	1.2.0
	1.1.0
	1.0.0

